Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix
نویسندگان
چکیده
Composites consisting of different quantities of carbon nanotubes and nanofibrils in a poly(methyl methacrylate) (PMMA) matrix have been prepared using a polymer extrusion technique. The nanotubes or nanofibrils were first dispersed over the polymer matrix particles using a dry powder mixing method. The final composite specimens contained well-dispersed and aligned nanofibrils and nanotubes. The orientation distribution of carbon fibrils and nanotubes in the composite was determined by image analysis and found to be maximized in the extrusion flow direction. The Knoop hardness data confirmed this observation, as a maximum was observed at 90 to the orientation of the reinforcement. When the initial PMMA particle diameter was under 200 mm, considerable improvements were observed in the mechanical properties of the nanofibril/PMMA composites. The interpretation of the mechanical data for nanotube/PMMA composites was more complex. Indeed, the tensile modulus was almost insensitive to the presence of either single-wall or multi-wall nanotubes, whereas the impact strength (thus, indirectly, the fracture toughness) was significantly improved by even small amounts of single-wall nanotubes. The method proposed here for the dispersion and orientation of carbon nanotubes and nanofibrils in a polymer matrix show promise for the preparation of improved engineering composites. # 2002 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Distribution of Residual Stresses in Polymer Reinforced Carbon Nanotubes and Laminated Carbon Fibers
In this study, the distribution of residual stress in fiber-reinforced nanocomposites is investigated. Fiber-reinforced nanocomposite is composed of three substances: carbon fiber, carbon nanotube (CNT), and polymer matrix. Unit cells in hexagonal packing array with different arrays as unit cell, 3*3 and 5*5 arrays have been selected as suitable for finite element analysis of residual stresses....
متن کاملOn the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method
In this paper, finite element method is used to obtain thermal conductivity coefficients of single-walled carbon nanotube reinforced polypropylene. For this purpose, the two-dimensional representative volume elements are modeled. The effect of different parameters such as nanotube dispersion pattern, nanotube volume percentage in polymer matrix, interphase thickness between nanotube and surroun...
متن کاملInvestigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach
In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...
متن کاملApplication of Halpin-Tsai Method in Modelling and Size-dependent Vibration Analysis of CNTs/fiber/polymer Composite Microplates.
In the present study, modelling and vibration analysis of Carbon nanotubes/ fiber/ polymer composite microplates are investigated. The governing equations of the Carbon nanotubes/ fiber/ polymer composite microplates are derived based on first order shear deformation plate theory, rather than other plate theories, due to accuracy and simplicity of polynomial functions. The modified couple stres...
متن کاملExperimental investigation of dosimetry response of nanocomposite of polystyrene-multiwall carbon nanotube in gamma radiation field
Recently, polymeric nanocomposites have been used as real-time detectors and dosimeters of gamma radiation. In this experimental work, multi-wall carbon nanotubes (MWCNT) were dispersed in polystyrene (PS) martix with a weight percentage of 0.05 wt%. SEM images confirmed the appropriate and uniform distribution of carbon nanotubes in the polymer matrix. The dark current and photocurrent of the ...
متن کامل